RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2015

FIRST YEAR [BATCH 2015-18]

MATHEMATICS [Gen]

Date : 22/12/2015 Time : 11 am – 2 pm

Paper:

Full Marks : 75

[Use a separate Answer Book for each Group]

Group - A

(Answer any five questions)

1. Show that the equation $\tan\left(i\log\frac{x-iy}{x+iy}\right) = 2$ represents the hyperbola $x^2 - y^2 = xy$. [5]

- 2. a) If α, β, γ be the roots of the equation $2x^3 + x^2 + x + 1 = 0$, find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$. [3]
 - b) Remove the second term of the equation $x^3 + 6x^2 + 9x + 4 = 0$.
- 3. Solve: $x^3 + 12x 12 = 0$.

4.

a) For what value of λ , the matrix $\begin{pmatrix} 2 & 3 & 1 \\ 3 & \lambda & 0 \\ 2 & 5 & 2 \end{pmatrix}$ is singular. [2]

b) Prove that
$$\begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = 2(a+b)(b+c)(c+a).$$
 [3]

5. Solve by Cramer's rule :

$$x + y + z = 2$$

 $x - y + 2z = 3$. [5]
 $3x + 5y - 7z = -4$

6. Compute the adjoint and the inverse of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
. [5]

7. Show that
$$A = \frac{1}{3} \begin{bmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 is orthogonal. Hence find A^{-1} . [4+1]

8. Solve, if possible, the following system of equations :

$$x + 2y + 3z = 2$$

$$2x + 4y + 2z = -1.$$
 [5]

$$x + 2y - 2z = 5$$

[2] [5]

<u>Group - B</u>

(Answer any five questions from each unit)

<u>Unit - I</u>

- 9. a) Given $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$, $x \in \mathbb{R}$. Test whether f is injective or surjective. [2]
 - b) $f:\mathbb{Z} \to \mathbb{Q}$ is defined by $f(x) = \frac{x}{2}$, $x \in \mathbb{Z}$ and $g:\mathbb{Q} \to \mathbb{Q}$ is defined by $g(x) = x^2$, $x \in \mathbb{Q}$. Find gof(x) and fog(x), if exist.

[3]

[5]

- 10. Prove that if $x^2 = e$ for all elements x of a group G, then G is commutative. (e: identity element of G). [5]
- 11. Prove that $(2\mathbb{Z}, +, \bullet)$ is a commutative ring. Is it a ring with unity? (\mathbb{Z} is the set of all integers). [4+1]
- 12. Prove that the ring $\{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ forms a field.
- 13. State the replacement theorem. Find a basis of the real vector space \mathbb{R}^3 containing the vectors (1,2,0), (1,3,1). [1+4]
- 14. For the real quadratic form $x_1^2 + x_2^2 x_3^2 + 2x_1x_2 + 2x_1x_3 2x_2x_3$ find the associated matrix and hence find it's nature. [5]
- 15. Find the eigen values and corresponding eigen vectors of $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$. [5]
- 16. State Cayley-Hamilton theorem and use it to compute the inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$. [2+3]

<u>Unit - II</u>

17. Find the value of β for which the sum of squares of the roots of the equation $x^2 + (2-\beta)x + 1-\beta = 0$ has a minimum value. [5]

18. If
$$y = \frac{\sin^{-1} x}{\sqrt{1 - x^2}}$$
, $|x| < 1$, show that $(1 - x^2)y_{n+2} - (2n+3)xy_{n+1} - (n+1)^2y_n = 0$. [5]

- 19. Show that the function $f(x, y) = \sin(x^2 + y^2)$ is continuous at any point (a, b) in \mathbb{R}^2 . [5]
- 20. If u = f(x,y) and $x = r \cos \theta$, $y = r \sin \theta$, use the chain rule to prove that $u_x^2 + u_y^2 = u_r^2 + \frac{1}{r^2} u_{\theta}^2$. [5]

21. State Schwarz's theorem on mixed second order partial derivatives for two variables function. If

$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$. [2+3]

- 22. Prove that the curves $\frac{x^2}{a} + \frac{y^2}{b} = 1$ and $\frac{x^2}{A} + \frac{y^2}{B} = 1$ will cut orthogonally if a b = A B. [5]
- 23. Show that the Pedal equation of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ is $r^2 + 3p^2 = a^2$. [5]
- 24. Find the radius of curvature at (r, θ) on the cardioide $r = a(1 \cos \theta)$, and show that it varies as \sqrt{r} . [4+1]

_____× _____